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The Langevin equation for a two-dimensional �2D� nonlinear guided vortex motion in a tilted cosine pinning
potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of
the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity
tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position
of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a
subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex

responses �on the frequency of an ac drive �� in terms of the nonlinear impedance tensor Ẑ and the nonlinear
ac response at � harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance

tensor ẐL in the presence of a dc which depend on the angle � between the current-density vector and the
guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of � anisotropy
and the Hall effect on the nonlinear power absorption by vortices is discussed.
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I. INTRODUCTION

It is well known that the mixed-state resistive properties
of type-II superconductors are determined by the dynamics
of vortices which in the presence of pinning sites may be
described as a motion of vortices in some pinning potential.1

In the simplest case this pinning potential is assumed to be
periodic in one dimension. Temperature-dependent dc
uniaxial pinning anisotropy, provoked by such washboard
planar pinning potential �PPP�, recently has been extensively
studied both theoretically2–4 and experimentally.5–9 Two
main reasons stimulated these studies. First, in some high-Tc
superconductors �HTSCs� twins can easily be formed during
the crystal growth.5–7 Second, in layered HTSCs the system
of interlayers between parallel ab planes can be considered
as a set of unidirectional planar defects which provoke the
intrinsic pinning of vortices.1

As the pinning force in a PPP is directed perpendicular to
the washboard channels of the PPP,1 the vortices generally
tend to move along these channels. Such a guided motion of
vortices in the presence of the Hall effect produces aniso-
tropic transport behavior for which even �+� and odd �−�
�with respect to the magnetic-field reversal� longitudinal ���
and transverse ��� dc nonlinear magnetoresistivities ��,�

� de-
pend substantially on the angle � between the dc density
vector j and the direction of the PPP channels �“guiding di-
rection”�. The dc nonlinear guiding problem was exactly
solved recently for the washboard PPP within the framework
of the two-dimensional �2D� single-vortex stochastic model
of anisotropic pinning based on the Fokker-Planck equation,
and rather simple formulas were derived for the dc magne-
toresistivities ��,�

� .2,3

On the other hand, the high-frequency and microwave
impedance measurements of a mixed state can also give in-

formation about the flux pinning mechanisms and the vortex
dynamics. One of the most popular experimental methods for
the investigation of the vortex dynamics in type-II supercon-
ductors is the measurement of the complex ac response in the
radiofrequency and microwave ranges. When the Lorentz
force acting on the vortices is alternating, then due to the
pinning the ac resistive response acquires an imaginary �out-
of-phase� component. Due to this reason measurements of
the complex ac response versus frequency � can give impor-
tant information on the pinning forces.

The very early model of Gittleman and Rosenblum10

�GR� considers oscillations of damped vortex in a harmonic
pinning potential. GR measured the power absorption of the
vortices in PbIn and NbTa films over a wide range of fre-
quencies � and successfully analyzed their data with the
simple equation

�ẋ + kpx = FL, �1�

where x is the vortex displacement, � is the vortex viscosity,
kp is the pinning constant, and FL is the Lorentz force. From
Eq. �1� it follows that the complex vortex resistivity �v is

��v/� f� = i��/�p�/�1 + i��/�p�� , �2�

where � f is the flux-flow resistivity and �p�kp /� is the
depinning frequency. As follows from Eqs. �1� and �2�, pin-
ning forces dominate at low frequencies ����p� where �v is
nondissipative, whereas at high frequencies ����p� fric-
tional forces dominate and the vortex resistivity is dissipa-
tive.

The experimental success of this very simple model
stimulated the attempts to use it for the interpretation of the
data taken in HTSCs, where the effects of thermal agitation
are especially important due to their low pinning activation
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energies and the high temperatures of the superconducting
state. As the GR model was developed for zero temperature
and cannot account for the thermally activated flux flow and
creep, which are very pronounced in HTSCs, there was a
need for a more general model for the ac vortex dissipation
at different temperatures and frequencies.

In order to fulfill this aim the vortex equation of motion
�Eq. �1�� was supplemented with Langevin force which was
assumed to be Gaussian white noise with zero mean, and the
cosine periodic pinning potential was used11–13 for taking
into account the possibility of vortex hopping between dif-
ferent potential wells. In the limit of small ac �i.e., for a
nontilted cosine pinning potential�, this new equation of mo-
tion was approximately solved by a continued-fraction
expansion11–13 using the analogy between a pinned vortex
and a Brownian particle motion in a periodic potential. As a
result, the complex resistivity �v which generalizes GR equa-
tion �2� has the form �see Eq. �8� of Ref. 11�

��v/� f� = �i��/�0� + 	00�/�1 + i��/�0�� , �3�

where 	00 is a creep factor that grows monotonically with
temperature, increasing from 	00=0 �no flux creep� to 	00
=1 �flux-flow regime�, and �0 is a characteristic frequency
�nonmonotonic in temperature� which, in absence of creep,
corresponds to the depinning frequency �p. If the frequency
� is swept across the temperature-dependent frequency �0,
the observed Re �v increases from a low-frequency value to
the flux-flow value � f, while Im �v exhibits a maximum at
�0. Thus, we can summarize that the temperature-dependent
ac-driven vortex motion problem has been exactly solved so
far only for the one-dimensional �1D� nontilted cosine pin-
ning potential at a small oscillation amplitude of the vortices.

At the same time, the examination of a strong ac drive
�which is interesting both for theory and for different high-
frequency or microwave applications� evidently requires one
to consider strongly tilted pinning potential. Actually, if at
low temperatures and relatively high frequencies in nontilted
pinning potential each pinned vortex will be confined to its
pinning potential well during the ac period, in the case of
strong ac+dc driving current the running states of the vortex
may appear when it can visit several potential wells during
the ac period.

The aim of this work is to suggest a theoretical approach
to the study of temperature-dependent nonlinear ac-driven
pinning-mediated vortex dynamics based on an exact solu-
tion �in terms of a matrix continued fraction� of the same
equation of vortex motion, as was discussed by Coffey and
Clem11 �CC� in a seminal paper �see Eq. �4�, which has an
additional Hall term�. This approach substantially general-
izes CC’s results because the 2D Langevin equation for the
nonlinear guided motion in a tilted cosine PPP in the pres-
ence of a strong ac at arbitrary value of the Hall effect has
been exactly solved. For this exact solution we used the ma-
trix continued-fraction technique earlier suggested and later
extensively employed for calculation of 1D nonlinear �ac
+dc�-driven response of overdamped Josephson junction
with noise in Refs. 14 and 15.

As a result, two groups of findings were obtained. First,
for the previously solved 2D dc problem in Refs. 2 and 3 the

influence of an ac on the overall shape and appearance of the
Shapiro steps on the anisotropic dc ��,�

� current-voltage char-
acteristics �CVCs� was calculated and analyzed. Second, for
the ac at a frequency � plus dc bias the 2D nonlinear time-
dependent stationary ��,�

ac� ac response on the frequency � in

terms of nonlinear impedance tensor Ẑ and a nonlinear ac
response at � harmonics was studied.

The organization of the paper is as follows: In Sec. II we
introduce the model and the basic quantities of interest,
namely, the average two-dimensional electric field and the
Fourier amplitudes for the averaged moments �rm�. In Sec.
III we present the solution of the recurrence equations for the
Fourier amplitudes in terms of matrix continued fraction and
introduce the main anisotropic nonlinear component of our
theory—the average pinning force, divided into three parts.
In Sec. IV we discuss the �-dependent dc magnetoresistivity
response with different �from Secs. IV A and IV E� aspects
of this problem. Sections V A and V H present different
problems related to nonlinear anisotropic stationary ac re-
sponse. In Sec. VI we conclude with a general discussion of
our results.

II. FORMULATION OF THE PROBLEM

The Langevin equation for a vortex moving with velocity
v in a magnetic field B=nB �B�	B	, n=nz, z is the unit
vector in the z direction, and n= �1� has the form

�v + n�Hv 
 z = FL + Fp + Fth, �4�

where FL=n��0 /c�j
z is the Lorentz force ��0 is the mag-
netic flux quantum and c is the speed of light�; j= j�t�= jdc

+ jac cos �t, where jdc and jac are the dc and ac density am-
plitudes and � is the angular frequency; Fp=−�Up�x� is the
anisotropic pinning force �Up�x� is the washboard planar pin-
ning potential�; Fth is the thermal fluctuation force; � is the
vortex viscosity; and �H is the Hall constant. We assume that
the fluctuational force Fth�t� is represented by a Gaussian
white noise, whose stochastic properties are assigned by the
relation

�Fth,i�t�� = 0, �Fth,i�t�Fth,j�t��� = 2T��ij��t − t�� , �5�

where T is the temperature in energy units, �¯� means the
statistical average, and Fth,i�t� with i=x or i=y is the i com-
ponent of Fth�t�.

The formal statistical average of Eq. �4� is

��v� + n�H�v� 
 z = FL + �Fp� . �6�

Though �Fth� disappears because of the stochastic property in
Eq. �5�, effects of the thermal fluctuation are implicit in the
term �Fp� �see below�.

Since the anisotropic pinning potential is assumed to de-
pend only on the x coordinate and is assumed to be periodic
�Up�x�=Up�x+a�, where a is the period�, the pinning force is
always directed along the anisotropy axis x �with unity vec-
tor x; see Fig. 1� so that it has no component along the y axis
�Fpy =−dUp /dy=0�. Thus, Eq. �4� reduces to the equations

vx + �vy = �FLx + Fpx + Fx�/� ,

vy − �vx = �FLy + Fy�/� , �7�
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where ��n and ��H /�, and we omitted the index “th” in
the Fth for simplicity. Equation �7� can be rewritten for the
subsequent analysis in the following form:

vx � ẋ = �F̃Lx + Fpx + F̃x�/�D ,

vy � ẏ = �F̃Ly + F̃y + �Fpx�/�D , �8�

where F̃Lx�FLx−�FLy, F̃Ly �FLy +�FLx, F̃x�Fx−�Fy, F̃y

�Fy +�Fx, D�1+�2, and �F̃i�t�F̃j�t���=2T�D�ij��t− t��.
Our aim now is to obtain from Eq. �8� a rigorous and

explicit expression of �vx� and �vy� in which effects of the
pinning and the thermal fluctuation are considered. We
assume, as usual,2,11–13 a periodic pinning potential of the
form Up�x�= �Up /2��1−cos kx�, where k=2� /a. As Fpx
=−Fp sin kx, where Fp�Upk /2, the first line of Eq. �8� has
the form

�̂�dx/dt� + sin x = F̂Lx + F̂x. �9�

Here x=kx is the dimensionless vortex coordinate, �̂

��D /kFp is the relaxation time, F̂Lx= F̃Lx /Fp is the dimen-

sionless generalized moving force in the x direction, F̂x

= F̃x /Fp, and �F̂x�t�F̂x�t���=���t− t��, where ��2�̂ /g and g
=Up /2T is the dimensionless inverse temperature.

Making the transformation x�t�→rm�t�=e−imx�t� in Eq. �9�,
one obtains a stochastic differential equation with a multipli-
cative noise term, the averaging of which yields a system of
differential-recurrence relations for the moments �rm�
= �e−imx� �as described in detail in Ref. 14�, viz.,

�̂d�rm��t�/dt + �m2/g + imF̂Lx��rm��t�

= �m/2���rm−1��t� − �rm+1��t�� . �10�

The main quantity of physical interest in our problem is
the average electric field, induced by the moving vortex sys-
tem, which is given by

�E� = �n/c�B 
 �v� = n�B/c��− �vy�x + �vx�y� , �11�

where x and y are the unit vectors in the x and y directions,
respectively.

As follows from Eq. �8�

�vy� = FLy/� + ��vx� , �12�

and so for determination of �E� from Eq. �11� it is sufficient
to calculate the �vx� from Eq. �9�. This calculation gives

�vx��t� =
�0jc

c�D
�jdc + jac cos �t − �sin x��t�� , �13�

where

�sin x��t� =
i

2
��r��t� − �r−1��t�� . �14�

In Eq. �10� jdc�n�jy
dc+�jx

dc� / jc, jac�n�jy
ac+�jx

ac� / jc, and jc
�cFp /�0.

Since we are only concerned with the stationary ac re-
sponse, which is independent of the initial condition, one
needs to calculate the solution of Eq. �10� corresponding to
the stationary case. To accomplish this, one may seek all the
�rm��t� in the form

�rm��t� = 

k=−�

�

Fk
m���eik�t. �15�

On substituting Eq. �15� into Eq. �10�, we obtain recurrence
equations for the Fourier amplitudes Fk

m���, i.e.,

Fk
m+1��� − Fk

m−1��� + izm,k���Fk
m���

+ ijac�Fk−1
m ��� + Fk+1

m ���� = 0, �16�

where

zm,k��� = 2�jdc + ��̂k/m − im/g� . �17�

III. SOLUTION OF THE PROBLEM IN TERMS OF
MATRIX CONTINUED FRACTIONS

Scalar five-term recurrence equation �16� can be trans-
formed into the two uncoupled matrix three-term recurrence
relations

Qm���Cm��� + Cm+1��� = Cm−1��� �m = 1,2, . . .�
�18�

and

− Qm
� �− ��C−m��� + C−m+1��� = C−m−1��� �m = 1,2, . . .� ,

�19�

where Qm is a tridiagonal infinite matrix given by

FIG. 1. System of coordinates xy �with the unit vectors x and y�
associated with the PPP washboard channels and the system of
coordinates x�y� associated with the direction of the current-density
vector j. � is the angle between the channels of the PPP and j, and
� is the angle between the average velocity vector of the vortices
�v� and j. FL is the Lorentz force, �Fp� is the average pinning force,
and FLx is the average effective motive force for a vortex. Here for
simplicity we assume =0. The schematic sample configuration for
three cases with different values of angle � �inset�: general case,
��0,� /2 �a�; longitudinal L geometry, �=� /2, j�y �b�; and
transverse T geometry, �=0, j�x �c�. In all cases E� and E� are
transverse and longitudinal �with respect to the j direction� electric-
field components.
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Qm��� = i�
� ] ] ] �

¯ zm,−2��� jac 0 ¯

¯ jac zm,−1��� jac 0

¯ 0 jac zm,0��� jac

¯ ¯ 0 jac zm,1���
¯ ¯ ¯ 0 jac

� ] ] ] �

�
�20�

�the asterisk denotes the complex conjugate�, and the infinite
column vectors Cm��� are defined as

Cm��� =�
]

F−2
m ���

F−1
m ���

F0
m���

F1
m���

F2
m���
]

� for m = � 1, � 2, . . . ,

C0 =�
]

0

0

1

0

0

]

� for m = 0. �21�

Thus, in order to calculate �sin x��t� in Eq. �14�, we need
to evaluate C1��� and C−1���, which contain all the Fourier
amplitudes of �r��t� and �r−1��t�. Equation �18� can be solved
for C1 in terms of matrix continued fractions,14 viz.,

C1��� =
I

Q1��� +
I

Q2��� +
I

Q3��� + ¯

C0, �22�

where the fraction lines designate the matrix inversions and I
is the identity matrix of infinite dimension. Having deter-
mined C1���, it is not necessary to solve Eq. �19�, as all the
components of the column vector C−1��� can be obtained
from Eq. �22� on noting that

F0
1��� = F0

−1���� and Fk
−1��� = F−k

1���� . �23�

Following the solutions of Eq. �22� and using relation
�23�, we can find the dimensionless average pinning force
�Fpx��t� �see Eqs. �6�–�9�, �14�, and �15��, which is the main
anisotropic nonlinear �due to a dependence on the ac and dc
input� component of the theory under discussion,

�F̂px��t� = − �sin x��t� = 

k=0

�

Im��ke
ik�t� , �24�

where �0�F0
1��� and for k�1 we have �k�Fk

1���
−Fk

−1���.
In fact, Eq. �24� is the expansion of the stationary time-

dependent �and independent of the initial conditions� average

pinning force �F̂px��t� into three parts,

�F̂px��t� = �F̂px�0
� + �F̂px�t1 + �F̂px�t

k�1. �25�

In Eq. �25� �F̂px�0
��−�sin x�0

�=Im �0 is the time-
independent �but frequency-dependent� static average pin-
ning force, which will be used for the derivation of the dc

magnetoresistivity tensor �̂0
�. �F̂px�t1�−�sin x�t1=Im��1ei�t�

is the time-dependent dynamic average pinning force
with a frequency � of the ac input, which is responsible

for the nonlinear impedance Z1���. �F̂px�t
k�1�−�sin x�t

k�1

=Im��ke
ik�t� describes a contribution of the harmonics with

k�1 into the dynamic average pinning force.

IV. �-DEPENDENT dc MAGNETORESISTIVITY
RESPONSE

A. Nonlinear dc resistivity and conductivity tensors

In order to proceed with these calculations we first ex-
press �see Eq. �11�� the time-independent part of �Ey��t�
= �nB /c��vx��t� as

�Ey�0
� = �nB/c��vx�0

� � �n� f/D��jdc − �sin x�0
��

= �� f/D�	0
��jy

dc + �jx
dc� , �26�

where

	0
� � 1 − �sin x�0

�/jdc = 1 + �F̂px�0
�/jdc. �27�

In Eq. �26� � f �B�0 /�c2 is the flux-flow resistivity and
the 	0

� can be considered as the �� , jdc , jac ,T�-dependent ef-
fective mobility of the vortex under the influence of the di-

mensionless generalized moving force F̂Lx
dc = jdc in the x di-

rection. In the absence of the ac �see Eq. �35�� the 	0
�

coincides with the probability of vortex hopping over the
pinning potential barrier.3

From Eq. �27� follows another physical interpretation of
the 	0

� function, which has a close relationship with the av-

erage pinning force �F̂px�0
� acting on the vortex. Actually, it is

evident from Eq. �27� that the �F̂px�0
� is connected to the 	0

�

function in a simple way,

�F̂px�0
� = − F̂Lx

dc�1 − 	0
�� . �28�

Then it is easy to show that

�Ex�0
� = �� f/D�jx

dc�1 + �2�1 − 	0
��� − �jy

dc� . �29�

From Eqs. �26� and �29� we find the
�� , jdc , jac ,T�-dependent magnetoresistivity tensor for the dc-
measured nonlinear law �E0

�����= �̂0
�jdc as
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�̂0
� = ��xx

dc �xy
dc

�yx
dc �yy

dc � =
� f

D
�1 + �2�1 − 	0

�� − �	0
�

�	0
� 	0

� � . �30�

The dc conductivity tensor �̂0
�, which is the inverse tensor

to �̂0
�, has the form

�̂0
� = ��xx

dc �xy
dc

�yx
dc �yy

dc � =
1

� f
� 1 �

− � �D/	0
�� − �2 � . �31�

We see from Eqs. �30� and �31� that the off-diagonal com-
ponents of the �̂0

� and �̂0
� tensors satisfy the Onsager relation

��xy =−�yx in the general nonlinear case and �xy =−�yx�. All
the components of the �̂0

� tensor and one of the diagonal
components of the �̂0

� tensor are functions of the current

densities jdc and jac and � through the external force F̂Lx, the
temperature T, the angle �, and the dimensionless Hall pa-
rameter �=n. It is important, however, to stress that the
off-diagonal components of the �̂0

� are not influenced by the
presence of the pinning potential barriers.

In conclusion of this subsection let us consider the limit-
ing case jac=0, i.e., we should derive a static CVC. In this
case we have from Eq. �10� that

�m + igjdc��rm�0 = �g/2���rm−1�0 − �rm+1�0� , �32�

where the subscript “0” denotes the statistical average in the
absence of the ac. In order to solve Eq. �32� we introduce,
following the calculation of Risken,16 the quantity Sm
= �rm�0 / �rm−1�0, which satisfies the equation

�m + igjdc�Sm = �g/2��1 − SmSm+1� . �33�

The solution of Eq. �33� �see details in Ref. 14� can be ex-
pressed in terms of the modified Bessel functions I	�z� of the
first kind of order 	 �where 	 may be a complex number17� as

Sm = Im+��g�/Im−��g� , �34�

where �� igjdc. Taking into account Eqs. �27� and �34� and
the relation S1= �r�0= �cos x�0− i�sin x�0, we conclude that

�F̂px�0=Im S1=Im�I1+��g� / I��g�� and

	0 � 	0
��jac = 0,� = 0� = 1 + Im S1/jdc = 1

+ Im�I1+��g�/I��g��/jdc. �35�

Note that Eq. �35� gives a simpler analytical expression for
the 	0 function which was presented in Ref. 2 on the basis of
a Fokker-Planck approach, namely,

	0
−1�F� =

F

1 − e−F�
0

1

due−FuI0�2g sin �u� , �36�

with F�2�gjdc, where g=Up /2T is the dimensionless in-
verse temperature. In Fig. 2 we plotted 	0

���d ,�a� graphs at
g=30, which demonstrate in the limit of �a=0 the �d depen-
dence for the probability of vortex hopping over the tilted
cosine pinning potential barrier. Here �d and �a are the di-
mensionless dc and maximal ac density magnitudes �in jc
units�, respectively ��d� jd / jc ,�a� ja / jc�.

B. Longitudinal and transverse dc resistivities

The experimentally measurable resistive dc responses re-
fer to coordinate system tied to the dc �see Fig. 1�. The

longitudinal and transverse �with respect to the dc direction�
components of the electric field, E�

dc and E�
dc, are related to

Ex
dc��Ex�0

� and Ey
dc��Ey�0

� by the simple expressions

E�
dc = Ex

dc sin � + Ey
dc cos � ,

E�
dc = − Ex

dc cos � + Ey
dc sin � . �37�

Then according to Eq. �37�, the expressions for the ex-
perimentally observable longitudinal and transverse �with re-
spect to the jdc direction� magnetoresistivities ��

dc=E�
dc / jd and

��
dc=E�

dc / jd �where jd is the dc density �jd�2= �jx
dc�2+ �jy

dc�2�
have the form

��
dc = �xx

dc sin2 � + �yy
dc cos2 � ,

��
dc = �yx

dc sin2 � − �xy
dc cos2 � + ��yy

dc − �xx
dc�sin � cos � .

�38�

Note, however, that the magnitudes of the ��
dc and ��

dc,
given by Eq. �38� and applied to the dc responses, in general,
depend on the direction of the external magnetic field B
along the z axis due to the �=n dependence of the 	0

� func-
tion �see Eq. �27��. In order to consider only n-independent
magnitudes of the ��

dc and ��
dc responses, we should introduce

the even �+� and odd �−� magnetoresistivities with respect to
magnetic-field reversal ��dc��n����dc�n���dc�−n�� /2� for
longitudinal and transverse dimensional magnetoresistivities,
which in view of Eq. �38� have the forms

��
dc� = �� f/D���cos2 � − �2 sin2 ��	0

�� + D�1 � 1�sin2 �/2� ,

�39�

��
dc� = �� f/D��D	0

�� sin � cos � + �	0
��

− D�1 � 1�sin � cos �/2� , �40�

where 	0
���n�= �	0

��n��	0
��−n�� /2 are the even and odd

components relative to the magnetic-field inversion of the
function 	0

��n�. In the E�,�
dc+�j� dependences, which follow

from Eqs. �39� and �40�, the nonlinear and linear �nonzero
only for ��

dc+ and ��
dc+� terms separate out in a natural way.

The physical reason for the appearance of linear terms is that
in the model under consideration for ��0 there is always

FIG. 2. The dimensionless function 	0
���d ,�a� numerically ob-

tained from Eq. �27� at g=30 and ��̂=0.2.
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the flux-flow regime of vortex motion along the channels of
the PPP. It follows from Eqs. �39� and �40� that for �
�0,� /2 the observed resistive response contains not only
the ordinary longitudinal ��

dc+��� and transverse ��
dc−��� mag-

netoresistivities, but also �as in the absence of ac; see Ref. 3�
two new components, induced by the pinning anisotropy: an
even transverse ��

dc+��� and the odd longitudinal component
��

dc−���.
In the absence of ac �	0�	0

���a=0,�=0�� the physical
origin of the ��

dc+��� �which is independent of  at �1� is
related to the guided vortex motion along the channels of the
washboard pinning potential in the thermoactivated flux-flow
�TAFF� regime. On the other hand, the ��

dc−��� component is
proportional to the odd component 	0

−, which is zero at 
=0 and has a maximum in the region of the nonlinear tran-
sition from the TAFF to the FF regime at �0 �see Figs. 6
and 7 of Ref. 3�. The �jdc ,g� dependence of the odd trans-
verse �Hall� resistivity has contributions both from the even
	0

+ and from the odd 	0
− components of the 	0�jdc ,g� function.

Their relative magnitudes are determined by the angle � and
the dimensionless Hall constant . Note that as the odd lon-
gitudinal ��

dc− and odd transverse ��
dc− magnetoresistivities

arise by virtue of the Hall effect, their characteristic scale is
proportional to �1.

C. dc response in LT geometries

In order to analyze the simplest forms of the ��,�
dc� equa-

tions given by formulas �39� and �40�, we introduce the L
and T geometries �see Fig. 1�, in which j �x �i.e., �=� /2�
and j�x �i.e., �=0 and j �y�, respectively. It follows from
Eqs. �39� and �40� that the longitudinal ��

dc− and transverse
��

dc+ resistivities for a superconductor with uniaxial pinning
anisotropy in LT geometries vanish �i.e., ��

dc−=��
dc+=0�. We

obtain

��,T
dc+ = 	0,T

� /D, ��,T
dc− = n	0,T

� /D , �41�

��,L
dc+ = 1 − 2	0,L

� /D, ��,L
dc− = n	0,L

� /D . �42�

Here 	0,T
� �	0

��jT
dc , jT

ac ,� ,g�, 	0,L
� �	0

��jL
dc , jL

ac ,� ,g�, jT
dc�n�d,

jT
ac�n�a, jL

dc��d, and jL
ac��a.

If we neglect the Hall terms in Eqs. �41� and �42�, then in
the absence of an ac in the L geometry vortex motion takes
place along the channels of the washboard PPP �the guiding
effect�, and in the T geometry transverse to the washboard
channels �the slipping effect�. In the L geometry the critical
current is equal to zero since the FF regime is realized for the
guided vortex motion along the PPP channels. In the T ge-
ometry, i.e., for vortex motion transverse to the channels, a
pronounced nonlinear regime is realized for g�1, the onset
of which corresponds to the crossover point jd= jcr, and for
g�1 we have jcr= jc, where jc is the critical current. The
longitudinal even ��,T

dc+ and transverse odd ��,T
dc− resistivities

are proportional to the even function 	0,T
+ ��d ,g�. In the limit

jd ,g→0 to within terms proportional to 2�1, we have
��,T

dc+=1 and ��,T
dc− =n. The main contribution to the ��,L

dc+,
which is equal to 1 with the same accuracy, is due to the
guided vortex motion along the washboard channels where
the pinning is absent. The magnitude of ��,T

dc− resistivity is

described by the Magnus force �d, which is vanishingly
small for a small Hall effect for realistically achievable cur-
rents jd� jc /, and the velocity component �vx� is sup-
pressed; the resistivity ��,L

dc− depends mainly only on the tem-
perature. For g�1 the ��,L

dc− is so small that it cannot be
measured ���,L

dc =0 in the limit g�1 since �d�1�, and for
g�1 /2 it approaches the value of the Hall constant  �to
within terms proportional to 2�1�.

It is worth noticing that the simple equations in Eq. �41�
in the T geometry allow one to extract from the ��d ,�a ,� ,g�
dependences of the measured resistivities ��,T

dc+ and ��,T
dc− the

dimensionless Hall constant  and the main nonlinear com-
ponent of the model under discussion, 	0,T

� . The latter in the
absence of ac, i.e., 	0,T, can be used for the prediction of the
�-dependent ��,�

dc� resistivities given by Eqs. �39� and �40� in
the case of �1.

D. Guiding of vortices and the Hall effect
in nonlinear dc+ac regimes

After derivation of Eqs. �39� and �40� let us proceed now
to a more detailed treatment of the dc vortex dynamics and
the resistive properties associated with them in the presence
of an ac. For simplicity we will neglect the usually small
Hall effect; i.e., we take =0. As a consequence, the nondi-
agonal components of the dc magnetoresistivity tensor �see
Eq. �30�� vanish ��xy

dc=�yx
dc=0�. Neglecting the Hall effect, the

formulas for the experimentally observed longitudinal ��
dc

and transverse ��
dc resistivities relative to the dc+ac current

can be represented as

��
dc = � f�	0

� cos2 � + sin2 �� , �43�

��
dc = � f��	0

� − 1�sin � cos �� = � f j
dc�F̂px�0

�sin � cos � .

�44�

Therefore, as was pointed out in Ref. 3, even in the ab-
sence of ac, under certain conditions in the dc and tempera-
ture dependences of the ��

dc and ��
dc a pronounced nonlinear-

ity appears in the vortex dynamics and a nonlinear guiding
effect may be observed in both the inverse temperature g and
the current density jdc=n�y

d. As a consequence of the even
parity of 	0

� in jdc and jac=n�y
a �see Eqs. �20�–�23� and �27��

the magnetoresistivities ��
dc and ��

dc are even in the magnetic-
field reversal, as they should be neglecting the Hall effect.

As was shown in Ref. 3, the specifics of anisotropic pin-
ning consist of the noncoincidence of the directions of the
external motive Lorentz force FL acting on the vortex and its
velocity �v� �for isotropic pinning FL � �v� if we neglect the
Hall effect�. The anisotropy of the pinning viscosity �which
can be defined as the inverse vortex mobility ��	�0

��−1� along
and transverse to the PPP channels leads to the result that for
those values of �jdc ,g ,�� for which the component of the
vortex velocity perpendicular to the PPP channels, �vx�0

�, is
suppressed, a tendency appears toward a substantial preva-
lence of guided vortex motion along PPP channels �the guid-
ing effect� over motion transverse to the channels �the slip-
ping effect�. In the experiment, the function
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cot � = −
��

dc

��
dc =

1 − 	0
���y

d,g,�y
a�

tan � + 	0
���y

d,g,�y
a�cot �

�45�

is used to describe the guiding effect, where � is the angle
between the average vortex velocity vector �v� and the
current-density vector jdc �see Fig. 1�. The guiding effect is
stronger when the difference in directions of FL and �v� is
larger, i.e., the angle � is smaller. Let us consider the current
and temperature dependence of cot ���y

d ,g ,�y
a� for fixed val-

ues of the angle ��0,� /2. In the temperature region corre-
sponding to the TAFF regime, we have ��� and, conse-
quently, at low currents guiding arises. At large currents
��y

d�1�, where for vortex motion transverse to the PPP chan-
nels the FF regime is set up, the vortex dynamics becomes
isotropic and we have �v� �FL for arbitrary value of the angle
�.

Let us now analyze the dc magnetoresistivity depen-
dences ��

dc� and ��
dc�, given by Eqs. �39� and �40�, with

allowance for the small Hall effect. In this case, the expres-
sions for ��,�

dc�, out to terms of order 2�1, have the form

��
dc+ = � f�	0

�+ cos2 � + sin2 �� ,

��
dc+ = � f�	0

�+ − 1�sin � cos � , �46�

��
dc− = � f	0

�− cos2 � ,

��
dc− = � f��	0

�+ + 	0
�− sin � cos �� . �47�

Here 	0
�� are obtained from the relation

	0
� = 1 + �F̂px�0

�/jdc � 1 + Im G0, �48�

where G0��0�jdc , jac ,� ,g� / jdc and

	0
�+ = 1 + Im G0

+, 	0
�− = Im G0

−. �49�

In the limit of a small Hall effect ��1� the expressions
for even and odd components of 	0

� �in terms of G0
�� in the

linear approximation in the parameter  tan ��1 are equal
respectively to

G0
+ = G0�n�y

d,n�y
a� + nRd

+� tan � ,

G0
− = �nRd

− − G0
+�� tan � , �50�

Rd � ���0/��y
d + �ja/jd����0/��y

a�� , �51�

where �0=�0�n�y
d ,n�y

a�, jd and ja are dc and ac density val-
ues, and Rd

+ and Rd
− are even and odd parts of the Rd, respec-

tively.
As follows from Eqs. �46� and �47�, the behavior of the dc

and temperature dependence of ��,�
dc� is completely deter-

mined by the �jd ,g 	 ja ,�� behavior of the 	0
�� dependences.

If �ja / jd��1, i.e., the influence of the ac on the dc response
is considered small, the linear limit for E�,�

dc��jdc� depen-
dences, following Eqs. �46� and �47�, is realized in that re-
gion of jd and g, where 	0

�+=const and 	0
�−=0, while the

region of nonlinearity of ��,�
dc��jd ,g 	 ja ,�� dependences cor-

responds to those jd and g intervals, where the dependences
	0

����y
d 	g� and 	0

���g 	�y
d� are nonlinear. Note that the nonlin-

earity in the temperature dependences ��,�
dc��g 	�y

d� can be ob-
served not only at small currents �in the TAFF regime� but
even at large currents �d�1 in the case where �y

d�1, where
this latter relation depends on the magnitude of the angle �
�for cos ��1 /�d we have �y

d�1 and 	0
��g�1�=0�. Thus, the

linearity or nonlinearity of the dependences ��,�
dc��g� at dcs

larger than unity depends on the magnitude of the angle �.

E. Shapiro steps and adiabatic dc response

Before a discussion about the influence of the ac on the
CVC of the model under discussion, it is instructive to con-
sider first a simple physical picture of the vortex motion in a
tilted �due to the presence of the dimensionless dc driving
force 0��d��� washboard PPP under the influence of the

effective dimensionless driving force f̂ = F̂px+ F̂Lx=−sin x
+�d. If the temperature is zero, the vortex is at rest with �d

=0 at the bottom of the potential well of the PPP. When the
PPP is gradually lowered by increasing �d, then for 0��d

�1 appears an asymmetry of the left-side and right-side po-
tential barriers for a given potential well, and in this range of

�d an effective force f̂ changes its sign periodically. With
gradual �d increase there will come a point where �d=1; for
�d�1 the more lower right-side potential barrier disappears,

the effective motive force f̂ becomes present everywhere
along x positive and the vortex is in the “running” state,
periodically changing its velocity with a dimensionless fre-
quency �i=���d�2−1. So the static CVC of this periodic mo-
tion at �d�1 is a result of time averaging of the stationary

time-dependent solution of the equation of motion dx /d�= f̂
with �= t / �̂. Eventually, the probability of the vortex over-
coming the barriers of the PPP 	0�	0

���a=0,�=0� at zero
temperature is

	0 = � 0, �d � 1

�1 − �1/�d�2, �d � 1,
� �52�

i.e., the 	0��d�1� monotonically tends to unity with increas-
ing �d.

If the temperature is nonzero, a diffusionlike mode ap-
pears in the vortex motion. At low temperatures �g�1� and
0��d�1 the TAFF regime of the vortex motion occurs by
means of the vortex hopping between neighboring potential
wells of the PPP. The intensity of these hops at low tempera-
tures is proportional to exp�−g�1−�d��, i.e., strongly in-
creases with increasing T and increasing �d due to the low-
ering of the right-side potential barriers at their tilting. On
the other hand, at �d just above the unity �when the running
mode is yet weak�, the diffusionlike mode can strongly in-
crease the average vortex velocity even at relatively low tem-
perature due to a strong enhancement of the effective diffu-
sion coefficient of an overdamped Brownian particle in a
tilted PPP near the critical tilt18 at �d=1 �see Sec. V H�.

Now we consider the influence of a small ��a�1� ac den-
sity with a frequency � on the CVC in the limit of very small
temperatures �g≫1�. In this case the physics of the dc re-
sponse is quite different depending on the �d value with re-
spect to the unity. If �d�1, the vortex is mainly �excluding
very rare hops to the neighboring wells� localized at the bot-
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tom of the potential well, where it experiences a small �
oscillations. The averaging of the vortex motion over the
period of oscillations in this case cannot change the CVC
which existed in the absence of the ac drive.

If, however, �d�1, then the vortex is in a running state
with the internal frequency of oscillations �i=���d�2−1. If
���i, the CVC is changed only in the second-order pertur-
bation approach in terms of a small parameter �a�1 �as it
was shown for the analogous resistively shunted Josephson-
junction problem19� because the CVC is not changed in the
linear approximation in this case. However, for �=�i ap-
pears a problem of a synchronization of the running vortex
oscillations at the �i frequency with the external driving fre-
quency �. As a result, the average �over period of oscilla-
tions� vortex velocity is locked in with the � in some interval
of the dc density �d even within the frame of the first-order
perturbation calculation. The width of this first synchroniza-
tion step �or the so-called Shapiro step in the resistively
shunted Josephson-junction problem� was found in Ref. 20.
The calculation in the spirit of this reference gives the
boundaries of the �d where the step occurs as

���
d − �a/2�d� � �d � ���

d + �a/2�d� . �53�

Here ��
d is the current density which gives �i=����

d �2−1
=�, i.e., ��

d =�1+�2. Then the size of the first Shapiro step
on the CVC is �a /��

d . In higher approximations �in terms of
��a�m, where m runs through all of the integers� the Shapiro
steps on the CVC appear at the frequencies �=m� and �i
=m�i. The width of the mth step at �a→0 is proportional to
��a�m, i.e., strongly decreases with increasing m.21

In Fig. 3 we plot the longitudinal CVC E�,T
dc+��d ,�a� show-

ing the Shapiro steps. The plot in Fig. 3 looks like the curves
discussed earlier22 for the CVC of the microwave-driven re-
sistively shunted Josephson-junction model at T=0 where
the overall shape of the CVC and different behaviors of the
two types of the Shapiro steps in the adiabatic limit were
explained. Our graph, in comparison with the curves in Ref.
22, is smoothed due to the influence of a finite temperature.
The longitudinal CVC E�,T

dc+��d ,�a� dependence demonstrates
several main features. First, in the presence of the microwave
current the dc critical current �c

d��a� is a decreasing function
of the ac drive. The physical reason for such behavior lies in

the replacement of the dc critical current by the total dc
+ac critical current. Second, with gradual �a increase the
zero-voltage step reduces to zero and all other steps appear.
Such steps are common because they do not oscillate and
spread over a dc range about twice the critical current 2�c

a.
These steps are the steps of the first kind and they distort the
CVC like a relief bump with a concave shift from the Ohmic
line. With further �a increase this relief bump shifts toward
higher �d values. Below this range the steps of the second
kind appear. These microwave current-induced steps oscil-
late rapidly and stay closely along the Ohmic line22 over the
dc range �d��a−1.

To summarize, we can determine three ��d ,�a� ranges
where the CVC behavior is qualitatively different. For large
dc bias current densities �a+1��d the CVC asymptotically
approaches the Ohmic line without microwave-induced
steps. For the intermediate dc range �a−1��d��a+1 the
CVC curve deviates from the Ohmic line as a concave bump
with the stable steps. For the lower dc range �d��a−1 the
steps oscillate with microwave current along the Ohmic line.
With gradual � increase the size of the steps increases,
whereas their number decreases.

V. NONLINEAR STATIONARY ac RESPONSE

A. Derivation of the impedance tensor

Using Eq. �11� we determine the nonlinear �in the ampli-
tudes jac and jdc and the frequency �� stationary ac response
as

�E�t � ��E��t� − �E�0
�� = �nB/c���vx�ty − �vy�tx� , �54�

where �E�0
�= �nB /c��−�vy�0

�x+ �vx�0
�y� is time-independent

part of �E��t� �see also Eqs. �26� and �29��, whereas �vy�t and
�vx�t are time-dependent periodic parts of �vy��t� and �vx��t�
which become zero after averaging over a period of 2� /� of
the ac cycle.

From Eqs. �13� and �54� we have

�Ey�t = �n� f jc/D�

k=1

�

�jac�kReZk���eik�t� , �55�

where

Zk��� = �1,k − i�k���/�jac�k,

�k��� � �Fk
1��� − Fk

−1���� , �56�

and �1,k is Kronecker’s delta.
The dimensionless transformation coefficients Zk in Eq.

�55� have a physical meaning as the kth harmonic with fre-
quency �k�k� in the ac nonlinear �Ey�t response. Equation
�56� for k=1 yields

Z1 = 1 − i�1/jac. �57�

Using Eqs. �54� and �55� we can express the nonlinear sta-
tionary ac response on the �-frequency Ey1

ac in terms of the
nonlinear impedance Z1 as

FIG. 3. The longitudinal CVC E�,T
dc+��d ,�a�, with �=0.2,g

=100, showing the Shapiro steps.
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Ey1
ac = �� f/D��jy

ac + �jx
ac�ReZ1ei�t� . �58�

If we put Z1��1− i�1, where �1 and �1 are the dynamic
resistivity and the reactivity, respectively, then Eq. �58� ac-
quires the form

Ey1
ac = �� f/D��jy

ac + �jx
ac���1

2 + �1
2 cos��t − �1� , �59�

where ��1
2+�1

2�	Z1	 and �1=arctan��1 /�1� are the dimen-
sionless amplitude and phase of the ac response on the jLx

ac

= �jy
ac+�jx

ac�cos �t input.
Similarly, using Eqs. �12� and �54�, we can show that

�Ex�t = � f jx
ac cos �t − ��Ey�t, �60�

and obtain the �-frequency ac response Ex1
ac as

Ex1
ac = �� f/D�Reei�t��D − �2Z1�jx − �Z1jy�� . �61�

From Eqs. �58� and �61� it follows that the complex ampli-
tudes of the electric field E1 and the current density J
= jei�t are connected by the relation E1= ẐJ, where Ẑ is the
frequency- and dc and ac amplitude–dependent impedance
tensor,

Ẑ��� = �Zxx Zxy

Zyx Zyy
� =

� f

D
�D − �2Z1 − �Z1

�Z1 Z1
� . �62�

It is relevant to note the similarity between Eqs. �30� and
�62�, from which follows that for the ac response Z1 plays the
same role as 	0

� for the dc response.
However, the connection between Z1 and the dynamical

average pinning force �F̂px�t1 is more complex than the rela-

tion between 	0
� and �F̂px�0

� �see Eq. �28��. Taking into ac-

count the time dependence of the �F̂px�t1, it is easy to show
that

�F̂px�t1 = Reei�t�jac�Z1 − 1��� . �63�

Equation �63� gives a physical interpretation of the Z1 im-
pedance and its structure may be compared with Eq. �28�.

The real quantities E1=Re E1 and jac=Re J are connected
by the relation E1= �̂acj, where the ac-response resistivity
tensor is

�̂ac = ��xx
ac �xy

ac

�yx
ac �yy

ac � . �64�

Note that from Eqs. �58� and �61� it follows that

�̂ac = ReẐ���ei�t� . �65�

B. Longitudinal and transverse impedance responses

The experimentally measurable ac resistive responses re-
fer to the coordinate system to which the ac is directed, for
simplicity, at the same angle � with respect to the y axis as
the dc �see Fig. 1�. The longitudinal and transverse �with
respect to the ac direction� components of the electric field,
E�

ac and E�
ac, are related to Ex

ac�t� and Ey
ac�t� by the same

relations as for the dc �see Eq. �37��. The latter is true for the
relations between the experimentally observable longitudinal
and transverse �with respect to the jac direction� magnetore-
sistivities ��

ac=E�
ac / ja and ��

ac=E�
ac / ja, where ja is jac ampli-

tude ��ja�2= �jx
ac�2+ �jy

ac�2�. As a result we have

��
ac = ReZ�ei�t�, ��

ac = ReZ�ei�t� , �66�

where

Z� = �� f/D���D − �2Z1�sin2 � + Z1 cos2 �� ,

Z� = �� f/D���Z1 − D�1 − Z1�cos � sin �� . �67�

Note, however, that the magnitudes of the ��
ac and ��

ac,
given by Eq. �66�, in general �as in the case of dc� depend on
the direction of the external magnetic field B along the z axis
due to the �=n dependence of the Z1 through the implicit
dependence of �1��� on the jac and jdc. In order to consider
only n-independent magnitudes of the ��

ac and ��
ac resistivi-

ties, we should introduce the even �+� and odd �–� longitu-
dinal and transverse magnetoresistivities with respect
to magnetic-field reversal in the form ��,�

ac��n�
����,�

ac �n����,�
ac �−n�� /2.

Let us first separate Z1=1− i�1 / jac into the even Z1
+�n�

=Z1
+�−n� and the odd Z1

−�n�=−Z1
−�−n� parts. If we assume

�1�n�=�1
+�n�+�1

−�n�, where �1
��n� are the even and odd

parts of �1�n� �i.e., �1
��n�= ��1�n���1�−n�� /2�, then we

have

Z1
+�n� = 1 − injc�jy�1

−�n� − �jx�1
+�n��/�jy

2 − �2jx
2� ,

Z1
−�n� = − injc�jy�1

+�n� − �jx�1
−�n��/�jy

2 − �2jx
2� . �68�

From now on, we can present Eq. �67� in a form similar to
Eqs. �39� and �40� with the only difference as the change of
	0

�� to Z1
� and ��,�

dc� to Z�,�
� . However, hereafter it will be

suitable for us to present Eq. �67� in another equivalent form,

Z�
+ = �� f/D���D − �2Z1

+�sin2 � + Z1
+ cos2 �� , �69�

Z�
− = �� f/D�Z1

−�cos2 � − �2 sin2 �� , �70�

Z�
+ = �� f/D���Z1

− − D�1 − Z1
+�sin � cos �� , �71�

Z�
− = �� f/D���Z1

+ + DZ1
− sin � cos �� . �72�

C. Hall effect and the guiding of vortices
in nonlinear ac response

Let us consider peculiarities of the ac resistive responses
in the investigated model due to the Hall effect. Experimen-
tally, three types of measurements of the observed ac resis-
tive characteristics are possible in a prescribed geometry de-
fined by a fixed value of the angle �. First is ac-response
measurements which investigate the dependence of observed
��,�

ac���a 	�d ,g� resistivities on the current density �a at fixed
dc density �d and inverse temperature g. Second is the de-
pendence of ��,�

ac��g 	�a ,�d� on the inverse temperature at
fixed �a and �d. Third, is the dependence of ��,�

ac���d 	�a ,g� on
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the dc density at fixed �a and g. The form of these depen-
dences is governed by a geometrical factor—the angle �
between the directions of the current-density vector j�t� and
the channels of the washboard pinning potential. There are
two different forms of the dependence of ��,�

ac� on the angle �
�see formulas �69�–�72��. The first of these is the “tensor”
dependence, also present in the linear regimes �similar to the
TAFF and FF regimes for formulas �39� and �40��, which is
external to the impedance Z1 �see Eq. �67��. The second is
through the dependence of Z1 on its arguments �a��� and
�d���, which in the region of the transition from linear in jac

and jdc regimes �at �a,d�1 and �a,d�1� is substantially non-
linear.

First recall that in the absence of the Hall effect �=0�
there exist only even �with respect to magnetic-field inver-
sion� impedances Z�,�

+ —the odd impedances Z�,�
− are zero

�see Eqs. �69�–�72��. The presence of nonzero value of 
leads not only to the appearance of a Hall contribution to the
observed ac responses on account of the even component Z1

+

of the impedance Z1, but also to the appearance of the odd
component Z1

−, which has a maximum in the region of the
nonlinear transition from one linear regime �at low �a ,�d and
g�1� to another linear regime �at large �a ,�d and arbitrary
g� and is essentially equal to zero outside this transitional
region �see Figs. 10 and 11 of Ref. 3�. As a consequence,
“crossover” effects arise: contributions from Z1

− to effects
due to Z1

+ and vice versa, and contributions from Z1
+ to effects

due to Z1
−. Thus, in the even impedance Z�

+ �see Eq. �71��, in
addition to the main contribution created by the guiding of
vortices and described by Z1

+, there exists a Hall contribution
arising due to Z1

−. The expression for the odd impedance Z�
−

�see Eq. �72�� contains, in addition to the Hall term arising
due to Z1

+, a term due to Z1
−.

D. ac response in LT geometries

In order to study a simpler form of Eqs. �69�–�72� we
consider first the L and T geometries of the ac response �see
Fig. 1, inset�. In L geometry �=� /2 and jL

ac=�a does not
depend on n as well as jL

dc=�d for the dc. As a result, �1,L as
well as Z1,L=1− i�1,L / jL

ac have �1,L
− =Z1,L

− =0. Finally, from
Eq. �69� it follows that

Z�,L
+ = �� f/D��1 + �2�1 − Z1,L

+ ��, Z�,L
− = 0, �73�

Z�,L
+ = 0, Z�,L

− = ��� f/D�Z1,L
+ . �74�

If we define ��,L
ac+ and ��,L

ac+ as the resistivity and reactivity of
Z�,L

+ impedance, respectively, by using the relation Z�,L
+

=��,L
ac+− i��,L

ac+ we can show that

��,L
ac+ = �� f/D��1 −  Im �1,L/�a� ,

��,L
ac+ = − �� f/D� Re �1,L/�a. �75�

Note that experimentally measured quantities of 	Z�,L
+ 	 and

tan ��,L=��,L
ac+ /��,L

ac+ allow one to obtain ��,L
ac+ and ��,L

ac+ and to
compare them with the theoretical formulas in Eq. �75�.
Similar calculations for Z�,L

− =��,L
ac− − i��,L

ac− yield

��,L
ac− = n�� f/D���a − Im �1,L�/�a,

��,L
ac− = n�� f/D�Re �1,L/�a. �76�

In T geometry �see inset of Fig. 1� �=0, jT
ac=n�a, and

jT
dc=n�d. In this case it follows from Eqs. �20�–�23� that

�1,T�n�=−�1,T�−n�, i.e., �1,T is an odd function of n and
�1,T

+ =0. As a result,

Z1,T
+ = 1 − in�1,T

− /�a, Z1,T
− = 0. �77�

Then from Eqs. �69�–�72� we have

Z�,T
+ = �� f/D�Z1,T

+ , Z�,T
− = 0, �78�

Z�,T
− = �� f/D��Z1,T

+ , Z�,T
+ = 0. �79�

If Z�,T
+ =��,T

ac+− i��,T
ac+ and Z�,T

− =��,T
ac− − i��,T

ac− , then from Eqs.
�78� and �79� we obtain Z�,T

− =�Z�,T
+ and

��,T
ac− = ���,T

ac+, ��,T
ac− = ���,T

ac+. �80�

From Eq. �80� it follows that experimentally measured
quantities satisfy the simple relations

	Z�,T
− 	 = 	Z�,T

+ 	, tan ��,T
− = tan ��,T

+ . �81�

At last, from Eqs. �77� and �78� it follows that ��,T
ac+

= �� f /D��1,T
ac+ and ��,T

ac+= �� f /D��1,T
ac+, where

�1,T
ac+ = 1 + n Im �1,T

− /�a,

�1,T
ac+ = n Re �1,T

− /�a, �1,T
− = �1,T

− = 0. �82�

E. Power absorption in ac response

In order to calculate the power absorbed per unit volume
P �and averaged over the period of an ac cycle�, we use the
standard relation P= �1 /2�Re�E1 ·J�, where E1 and J are the
complex amplitudes of the ac electric field and current den-
sity, respectively. Using Eqs. �62� and �67� we can show that

P = �j2/2��̄ � �j2/2�Re Z� . �83�

After some algebra we obtain

�̄ = �� f/D��D sin2 � + �1 − D sin2 ��Re Z1� . �84�

Taking into account that Z1�1− iG1, where G1��1 / jac,
we conclude that Re Z1=1−Re�iG1�=1+Im G1. Then from
Eq. �84� we have

�̄ = �� f/D��1 + �1 − D sin2 ��Im G1� . �85�

In the limit of �1 we obtain for �̄ a simpler result,

�̄ = � f�1 + Im G1 cos2 �� , �86�

which will be analyzed in detail in Sec. IV F.
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From Eq. �84� follows two simple results for �̄ in LT
geometries,

�̄L = �� f/D��D − �2 Re Z1L� = �� f/D��1 −  Im �1L/�a� ,

�87�

�̄T = �� f/D�Re Z1T = �� f/D��1 + n Im �1T
− �n�/�a� . �88�

Note that �̄L and �̄T in Eqs. �87� and �88� are equal to the
expressions for the ��,L

ac+ and ��,T
ac+ given by Eqs. �75� and �82�,

respectively.

F. ac impedance and power absorption at �™1

Here we analyze the ac+dc impedance dependences Z�
�

and Z�
� �see Eqs. �69�–�72��, with allowance for the small

Hall effect ��1�. In this case Eqs. �69�–�72� become sim-
pler and the expressions for Z�,�

� , out of terms of order 2

�1, have the form

Z�
+ = � f�Z1

+ cos2 � + sin2 �� ,

Z�
+ = � f�Z1

+ − 1�sin � cos � , �89�

Z�
− = � fZ

− cos2 � ,

Z�
− = � f��Z1

+ + Z1
− sin � cos �� . �90�

Here Z1
� can be obtained from relation

Z1 = Z1
+ + Z1

− = 1 − iG1 = 1 − i�G1
+ + G1

−� = �1 − iG1
+� − iG1

−,

�91�

where G1��1�jac , jdc� / jac, Z1
+= �1− iG1

+�, and Z1
−=−iG1

−. In
the case of a small Hall effect ��1� the expressions for
even �+� and odd �–� components of Z1��ac ,�dc� �in terms of
G1

�� in the linear approximation in the parameter  tan �
�1 are equal respectively to

G1
+ = G1�n�y

a,n�y
d� + nRa

+� tan � ,

G1
− = �− G1

+ + nRa
−�� tan � , �92�

Ra � ����1/��y
a� + �jd/ja����1/��y

d�� , �93�

where �1=�1�n�y
a ,n�d

a�, ja and jd are ac and dc density val-
ues, and Ra

+ and Ra
− are even and odd parts of the Ra, respec-

tively.
It is worth noticing that Eqs. �89� and �90� have the same

structure as Eqs. �46� and �47� for the dc+ac response at 

�1. Actually, if we change Z1
� and Z�,�

� in Eqs. �89� and �90�
to 	0

�� and ��,�
dc�, respectively, we obtain then Eqs. �46� and

�47�. So all conclusions following the discussion about the
structure of these equations can be repeated for Eqs. �89� and
�90�.

It is interesting also to analyze an anisotropic power ab-
sorption in the limit of �1, given by Eq. �86� in Sec. IV E.
Let us set G1=G1

++G1
−, where G1

� are presented by Eqs. �92�
and �93�. In the case where =0, G1=G1

+=G1�n�y
a ,n�y

d�
=�1�n�y

a ,n�y
d� /n�y

a, where �y
a=�a cos �, �y

d=�d cos �, and

�̄ = � f�1 + cos � · n Im �1
−�n�/�a� . �94�

Note that Eq. �94� at �=0 yields �̄= �̄T�=0�, where �̄T is
given by Eq. �88�.

G. Linear ac response

Here we assume that j= jdc+ jacei�t and the alternating cur-
rent is small �jac�1�. There are three different ways to de-
rive linear �in jac� impedance Z1l at arbitrary value of jdc.

The first way is to use the general expression for
Z1�jac , jdc� �see Eq. �57�� derived through the method of ma-
trix continued fraction at arbitrary magnitudes of the jac and
jdc. If we take into account that �1�jac=0�=0, then it follows
that

Z1L = lim
jac→0

Z1 = 1 − i�d�1/djac�	 jac=0. �95�

This method is the most general and powerful if we can
calculate Z1�jac , jdc�.

The second way is to calculate Z1l by means of making
the perturbation expansion of the �rm��t� �see Eq. �10�� in
powers of jac�1 in the form

�rm�t = �rm�0 + �rm�1 + ¯ , �96�

where �rm�1=Am���jacei�t, the subscript “0” denotes the sta-
tistical averages in the absence of the ac, and the subscript
“1” denotes the portion of the statistical average which is
linear in the ac. Whereas the �rm�0 satisfies Eq. �32�, the
complex amplitude Am��� �for m�1� can be presented �see
details in Sec. 5.5 of Ref. 14� in terms of the infinite scalar

continued fraction S̃m��� as

A1��� = 2i

n=1

�

�− 1�n�
m=1

n

SmS̃m��� , �97�

where

S̃m��� =
1/2

i��̂

m
+ ijdc +

m

g
+

1/4
i��̂

m + 1
+ ijdc +

m + 1

g
+

1/4
i��̂

m + 2
+ ijdc +

m + 2

g
+ ¯

�98�
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and S̃m��=0�=Sm �see also Eqs. �33� and �34��. Using Eq.
�97� and taking into account that A−1���=−A1

��−��, we con-
clude that

�sin x�1 = �i/2���r�1 − �r−1�1� = B���jacei�t, �99�

where B�����i /2��A1���+A1
��−���. Then from expressions

for the �vx�t1, taken at jacei�t �Eqs. �63� and �99��, it follows
that dimensionless linear impedance is

Z1l��� = 1 − B��� . �100�

At last, the third way to calculate the linear impedance gives
an approximate analytical expression for Z1l��� within the
frames of the method of effective eigenvalue �see details in
Secs. 5.6 and 5.7 of Ref. 14�. Following this approach we
can express the dimensionless linear impedance in terms of
the modified Bessel functions I	�z� as

Z1l��,g, jdc� = 1 −
1

2
� I1+��g�

I��g��� + i��̂�
+

I1−��g�
I−��g���� + i��̂�� ,

�101�

where

� = I��g�I1+��g���2�
0

g

I��t�I1+��t�dt� �102�

is an effective eigenvalue14 and �� igjdc. It follows from
Eqs. �101� and �102� that at �=0

Z1l�� = 0,g, jdc� = d�jdc	0�jdc��/djdc = 1

− Re��2/I�
2 �g���

0

g

I��t�I1+��t�dt� ,

�103�

where 	0�jdc� is given by Eq. �35�. Note also that the right-
hand side of Eq. �103� is the exact expression for the dimen-
sionless static differential resistivity in an analytical form. In
the limit jdc=0 from Eq. �103� follows the well-known result
of Coffey and Clem11 �see also Refs. 12 and 13�. Actually, in
this limit �=0 and

� = �� = I0�g�I1�g�/�I0
2�g� − 1� . �104�

As a result

Z1l��,g, jdc = 0� � Z1l
0 =

	00 + ����2 + i���1 − 	00�
1 + ����2 ,

�105�

where 	00�	0�jdc=0�=1 / I0
2�g� is the flux creep factor3,4,11,12

and

� = �̂/� = �̂�I0
2�g� − 1�/I0�g�I1�g� = �̂�1 − 	00��I0�g�/I1�g��

�106�

is the characteristic relaxation time. If Z1l
0 =�1l

0 − i�1l
0 , where

�1l
0 and �1l

0 are linear resistivity and reactivity in the absence
of the dc, respectively, then from Eq. �105� �see also Eq. �2��
it follows that

�1l
0 ��,g� = 1 −

1 − 	00

1 + ����2 , �1l
0 = −

���1 − 	00�
1 + ����2 . �107�

As expected, in the limit of zero temperature �g→�� we
have 	00→0,�→ �̂ and the results of Gittleman and
Rosenblum10 �see also Eqs. �1� and �2�� follow from Eq.
�107�.

H. Nonlinear impedance and harmonic response

Let us consider strong nonlinear effects in the ac imped-
ance of a sample subjected to a pure ac drive dimensionless
current density �a cos �t, where �a�	jac	 / jc. In the following
we will discuss the behavior of ��d ,�a ,� ,g�-dependent im-
pedance for simplicity in terms of the dimensionless ac re-
sistivity �1

ac+=�1 and reactivity �1
ac+=�1. As the angular �

anisotropy in these responses is omitted, the experimental
observation of the following dependences �see Figs. 4–8�
can be carried out in fact by the measurement of the ��,T

ac+ and
��,T

ac+ responses in T geometry �see Eqs. �77� and �78� and the
definition of the Z�,T

+ �. Figure 4 shows the dimensionless ac
resistivity �1 and reactivity �1 versus ac density �a for differ-
ent dimensionless frequencies ����̂ at very low tempera-
ture �g=100�.

As can be seen from Fig. 4�a�, when � is very small, the
�1��a� shows several characteristic features: a threshold �c

a

value and a subsequent parabolic rise, above the threshold,
with associated steplike structures. The threshold current
density at which a sudden increase in �1��a� starts may be
defined as critical current density �c

a. The step height de-
creases with increasing �a. The reactivity �1��a� shows nearly
periodic dynamic 2� jumps of the vortex coordinate occur-
ring as the drive current density �a is increased �see Fig.
4�b��. The curves in Figs. 4�a� and 4�b� look like the curves
discussed earlier23 for the nonlinear resistance and reactance

FIG. 4. The ac resistivity �1 and reactivity �1 versus �a for �
=0.01�1� ,0.1�2� ,0.2�3� ,0.4�4� ,0.7�5� ,1�6�, with �d=0.01,g=100.
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of the purely ac-driven resistively shunted Josephson-
junction model at T=0, where the overall shape and phase
slips of these curves at several dimensionless frequencies
were explained in terms of the bifurcations in the time-
dependent solution of the equation for the phase difference �
across the junction.24,25 Analogous bifurcations of the dimen-
sionless coordinate x versus dimensionless time �̂ /� in our
problem at T=0 can be calculated too.

These bifurcations can cause sudden changes in Ey1
ac�t�

during one cycle of the alternating current and hence result
in steps.23 When � becomes large, both the threshold and
steps in �1��a� disappear and the amplitude of the x jump in
�1��a� becomes larger. Also, the x jump moves to large val-
ues of �a and the spacing in �a between bifurcations becomes
large, which results in �1 and �1 approaching unity. Because
in our problem the abrupt 2� jumps of the dimensionless
vortex coordinate x correspond to the overcoming by vortex
of the potential barrier between two neighboring potential
wells at nonzero temperature, our curves �1��a� and �1��a� in
comparison with the curves in Refs. 24 and 25 are smoothed
due to the influence of a finite temperature.

It is worth noticing that the magnitude of �1��a 	�� in Fig.
4�a� at �a�1 is approximately equal to a constant which
progressively increases with increasing �. From a physical
viewpoint it corresponds to the enhancement of power ab-
sorption with the growth of � due to the increase in the
viscous losses accordingly to GR �see Sec. I� mechanism.

Now we consider the case where an ac-driven sample
is dc biased, i.e., the washboard pinning potential is tilted.
In Fig. 5 we plot �1 and �1 versus �a for various values of

FIG. 5. The ac resistivity �1 and reactivity �1 versus �a for �d

=0.01�1� ,0.5�2� ,0.8�3� ,1.5�4� ,3�5� ,10�6�, with g=100,�=0.1.

FIG. 6. The ac resistivity �1 and reactivity �1 versus �d for �a

=0.01�1� ,0.1�2� ,0.5�3� ,0.7�4� ,1.5�5� ,10�6�, with g=100,�=0.1.

FIG. 7. The frequency dependence of �1,T
+ ��� for various g, �I�

�d=1 �solid lines�, �II� �d=0 �dotted lines�.

FIG. 8. The third-harmonic response Re Z3 and 	Z3	 versus � for
�a=0.01�1� ,0.1�2� ,0.3�3� ,0.5�4� ,0.7�5�, with �d=0.9,g=30.
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�d�	jdc	 / jc at fixed dimensionless frequency �=0.1 and
very low temperatures �g=100�. There are two regimes of
behavior noticeable, corresponding to �d��a or �a��d.

When �d is very small �for instance, �d=0.01�, the critical
ac density �c

a��d=0.01� is found to be equal to A�1 �see Fig.
5�a��. When the dc drive current density �d is smaller than A
�i.e., 0��d�A�, it can be seen that the ac critical current
density �c

a as a function of �d decreases and that both the step
size and step rising pattern are changed. In the inset of Fig.
5�a� we plot the �c

a as a function of �d for �=0.1. A linear fit
�c

a=−�d+A yields A=1.02. Note, however, that this �c
a��d�

function is weakly frequency dependent.
When �d�A, initially apparent jumps appear and with

further increase in the ac drive current density �a, the �1
begins to decrease with smoothed intermittent steps and
eventually approaches the unity. This regime ��a ,�d���c

a is
rather interesting because it shows strong vortex-locking ef-
fects in the ac impedance, similar to the Shapiro steps seen in
the dc CVCs. For very large values of �d ��d=10�, as ex-
pected, the effect of the microwave current density is negli-
gible and the ac dimensionless resistivity �1 approaches
unity.

In the case of ac reactivity �1, which is plotted in Fig.
5�b�, the smoothed x jump is not affected by the increase in
the dc density �d. However, the amplitude of this jump re-
duces substantially for larger values of �d.

In Fig. 6 we plot �1 and �1 versus �d for different ac drive
current densities, �a=0.01,0.1,0.5,0.7,1.5,10. It can be ob-
served from Fig. 6�a� that for all values of �a, as �d increases,
�1 initially increases, reaches a maximum �very narrow and
high for �a�0.1�, and approaches unity eventually. On the
other hand, �1 decreases for �a�0.1, slowly increases below
�d�1, and then sharply decreases, having in the vicinity of
�d�1 a deep minimum, and then approaches zero. So the
occurrence of the x jump can be seen clearly when �d is
small, whereas large values of either �a or �d diminish the
effect of the x jumps.

In Fig. 6�a� the �1��d� dependences demonstrate several
main features. First, the curves calculated at �a�1 show the
progressive shrinking of the flux creep range �where
�1��d�≪1� with increasing �a. If we define the �c

d��a� as the
dependence of the dc critical current on the value of a small
ac drive, then we can show that �c

d�1−�a at �a�1. The
physical reason for such behavior is obvious. Second, the
appearance of a high peak in �1��d� near �d=1 for �a→0 can
be simply explained from an examination of the dc CVC
curves, calculated at �a→0. In this limit it is evident that a
dynamic dc resistivity �taken in the vicinity of the �c

d�, which
is equal to the derivative of the dc CVC with respect to the
�d, is strongly enhanced at T→0. Third, taking into account
an analogy between Brownian motion in a tilted periodic
potential and continuous phase transitions,26 one can say that
a thresholdlike phase transition in the vortex motion along
the x axis occurs between the “localized” vortex state at �d

��c
d��a� and the “delocalized” running state at �d��c

d��a�. If
we consider only the linear impedance response �i.e., Z1,L���
does not depend on �a�, this phase transition takes place at
�d=1 and at the x point26 where d2Up /dx2=0. Fourth, as was
shown recently in Ref. 18, a strong enhancement of the ef-
fective diffusion coefficient D of an overdamped Brownian

particle in a tilted washboard potential near the critical tilt
may occur; that, in our case, D��d� may have a peak in the
vicinity of �d=1.

The consequences of the D enhancement we analyze with
the aid of Fig. 7, where the frequency dependence of
�1�� 	�d=0� �monotonic curves� and �1�� 	�d=1� �nonmono-
tonic curves� calculated at �a=0 for three different tempera-
tures �g=10,20,50� are shown. The monotonic curves �d

=0 agree with the results of Coffey and Clem,11 who, in fact,
calculated the temperature dependence of the depinning fre-
quency �introduced at T=0 in Ref. 10� in a nontilted cosine
pinning potential. In contrast to this monotonic behavior, the
nonmonotonic curves ��d=1� demonstrate two characteristic
features: first, an anomalous power absorption ��1
�1.6–2.8� at very low frequencies and second, a deep mini-
mum for the power absorption ��1�0.3–0.6� at T-dependent
�min. The appearance of this frequency- and temperature-
dependent minimum at �d=1 may be related to the resonance
activated reduction in the mean escape time of the Brownian
particle due to an oscillatory variation of the pinning barrier
height.27

At last we consider the frequency dependence of the kth
transformation coefficient amplitude, i.e., 	Zk	�� 	 jd , ja ,g�
taken at different values of the dc and ac densities and in-
verse temperature. Here we point out only the summary of
the 	Zk	��� curves’ behavior because a more detailed descrip-
tion of these results �interesting for applications� will be pub-
lished elsewhere.

The main feature of the frequency dependence of the kth
harmonics is the appearance �see Fig. 8� of a pronounced
maximum at �d=1 for �max=0.1 in both Re Zk��� and
	Zk	��� curves. The magnitude of the maximum is increasing
with �a decreasing to zero and g increasing to infinity. For
example, the magnitudes of Re Zk��max� and 	Zk	��max� are
approximately equal to 20 for k=3,4 at g=30, �d=1, and
�a=0.01. The emergence of this maximum and its growth
with the temperature decrease �g→�� is related to the origin
of a singularity of the ����� type in the � dependence of the
linear impedance response of the overdamped shunted Jo-
sephson junction at T=0 and �d�1.28 Note also that
Re Zk��� becomes negative in the vicinity of �max, which, in
turn, is related to the origin of a similar singularity in the
linear Z1�jdc 	� ,g� response with the increasing �.

VI. CONCLUSION

In conclusion, the considered exactly solvable two-
dimensional model of the vortex dynamics is of great interest
since very rich physics is expected from combination of a
strong dc and ac drive, arbitrary value of the Hall effect �note
that a big Hall effect was observed in YBCO �Ref. 29��, and
the low-temperature-mediated vortex hopping �or running� in
a washboard pinning potential. The obtained findings sub-
stantially generalize previous theoretical results in the field
of the dc �Refs. 2 and 3� and ac �Refs. 11–13� stochastic
approach to the study of the vortex dynamics in the wash-
board planar pinning potential. Experimental realization of
this model in thin-film geometry8,9 opens up the possibility
of carrying out a variety of experimental studies of directed
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motion of vortices under �dc+ac� drive simply by measuring
longitudinal and transverse voltages. Experimental control of
a frequency and value of the driving forces, damping, Hall
constant, pinning parameters, and temperature can be effec-
tively provided.

While the discussion in this paper has been entirely in the
context of nonlinear 2D pinning-mediated vortex dynamics,
we are aware that obtained results are generic to all systems
with a tilted washboard potential subjected to an ac drive. In
this sense we are conscious of that physical explanation of
our results should be supplemented with several new notions
widely discussed. Here we mean notions of stochastic
resonance,30 resonance activation,27 and noise enhanced
stability31 which may be used not only for interpretation of
our theoretical results but, on the contrary, the experimental
verification of some predictions of these new approaches
may be performed with the aid of the model under discus-
sion.

It was shown also how pronounced nonlinear effects ap-
pear in the ac response and the linear-response solutions are
recovered from the nonlinear ac response in the weak ac
limit. The influence of a subcritical or overcritical dc on the
time-dependent stationary ac longitudinal and transverse re-
sistive vortex response �on the frequency of an ac drive �� in

terms of the nonlinear impedance tensor Ẑ and a nonlinear ac

response at � harmonics are studied. Analytical formulas for

2D temperature-dependent linear impedance tensor ẐL in the
presence of a dc which depend on the angle � between the
current-density vector and the guiding direction of the wash-
board PPP are derived and analyzed. Influence of � aniso-
tropy and the Hall effect on the nonlinear power absorption
by vortices is pointed out.

Up to now we have considered only the vortex motion
problem. For the future experimental verification of our the-
oretical findings, we should keep in mind that they may be
applied directly only for thin-film superconductors in the
form of naturally grown �for example, in the untwined
a-axis-oriented YBCO film32� and artificially prepared wash-
board pinning structures.8 An application of our results for
more general cases should take into account that they may be
supplemented by consideration of the complex penetration
length and the quasiparticle contribution in the way as it was
made in the papers.11,33
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